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This paper presents a theory describing the electrical resistivity (conductivity) in the axial 
direction of unidirectional fibre-reinforced metal-matrix composite (MMC) materials at 
cryogenic and higher temperatures. The theory is derived from the solution of Boltzmann's 
equation. A triple-integral expression is obtained to describe the change in the electrical 
conductivity in the matrix metal due to electron scattering from the fibre surfaces. It is shown 
that at cryogenic temperatures, the electrical resistivity can rise by a factor of 2200 over a 
decrease in temperature of about 6 K below about 10 K. This effect is due entirely to electron 
scattering from fibre surfaces. The model developed shows that the composite resistivity 
agrees well with known experimental data at temperatures above 80 K. At very low tem- 
peratures, ~oo (T)/gc (TR) ~ (1 - CT -4)-1, where T is the absolute temperature. Shortcomings 
and implications of the theory are discussed. 

1. I n t r o d u c t i o n  
No theoretical analyses have been found which 
correctly predict the electrical resistivity (conduc- 
tivity) of continuous fibre-reinforced metal-matrix 
composites (MMC) at cryogenic and higher tempera- 
tures. As the temperature decreases from room tem- 
perature the composite resistivity is expected to 
decrease steadily, until at cryogenic temperature, it 
will rise sharply by orders of magnitude. The steady 
decrease is due to thermal effects in the matrix which 
can be modelled as Q(T) ~ T", where Q(T) is the 
temperature-dependent resistivity of the matrix, T is 
the absolute temperature and n is an exponent 
between 1 and 2 [1]. The sharp increase in resistivity at 
cryogenic temperature has been referred to by Dingle 
[2] and others [3-5] as the size effect. In the analysis of 
MMC resistivity (conductivity), the resistivity of the 
fibres is generally considered to be orders of magni- 
tude greater than that of the matrix material. 
Therefore, the electrical conductivity of MMC is 
generally dominated by the matrix conductivity. 

Although there are a number of macroscopic con- 
ductivity models to predict the electrical conductivity 
of MMC, no microscopic models, particularly those 
dealing with the electron behaviour at very low tem- 
peratures, could be found [6]. In fact, it appears that 
there are no conductivity data at these low tem- 
peratures [6]. Macroscopic models are of two kinds: 
conduction along the fibre and conduction transverse 
to the fibre direction. The first kinds are based on 
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some variation of the rule of mixtures, assuming the 
matrix conduction to be dominant. The transverse 
electrical conductivity models exhibit various degrees 
of complexity [7-10] including concepts of percolation 
[11-! 3]. Both kinds of model do not correctly predict 
electrical conductivity or resistivity of MMC at room 
temperature and below, and fail altogether below 
liquid-nitrogen temperature. One reason for this 
failure is that these models do not account for the 
electron transport process for temperature conditions 
in which the electron-scattering mean free path is of 
the order of or greater than the spacing between fibres. 
Electron scattering is produced by the fibre surfaces 
which, on a macroscopic scale, manifests itself as a 
greatly increased resistance to current flow. Thus, the 
fibres act as scattering boundaries, thereby modify- 
ing considerably the electrical conduction of the 
composite. 

In this paper, a theory is developed to describe the 
electron scattering process from fibre surfaces using a 
classical theory based on the solution of Boltzmann's 
equation. In a certain sense, the theory presented is the 
inverse of the problem solved by Dingle [2] for very 
thin wires and films. The resulting triple definite 
integral is integrated numerically and the results are 
applied to continuous fibre-reinforced MMC to 
predict the electrical resistivity below room tem- 
perature. The present theory is applicable only to 
conduction along the fibre direction. 
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2. T h e o r y  
This theory considers a single fibre of a non- 
conducting material (graphite, oxides, nitrides, boron, 
or other) in a metallic matrix, with the fibre in the z 
direction. A small electric field E is applied in the z 
direction. Let 0 be the velocity of an electron at a point 
? in the metal, where f originates at the fibre axis. 
The linearized Boltzmann equation in Cartesian co- 
ordinates is then 

OF I OF l F 1 eE OF ~ 
Vx ~X -t- Vy "~y + to - m* Ovz (1) 

which describes electron transport in the matrix. In 
Equation 1, 

r ' ( 0 ,  ~) = r(~,  ?) - F~ (2) 

represents the deviation of the electron distribution 
function F from the equilibrium distribution F ~ In 
Equation 1, m* is the electron effective mass which is 
assumed to be a scalar quantity, and e is the electronic 
charge. The quantity t0 is the electron relaxation 
time between collisions in the bulk metal. The general 
solution of Equation 1 is [2] 

(3)  

where 

etoE OF ~ 
F~m(O) = 

m* OVz 

is the solution in the bulk metal and 

If - eBI [ (x  - xB)  2 + ( y  - y~)]~/2 

t o y  %(V~x + 0 '/2 

The point defined by ?B is on the fibre boundary or 
surface which is reached by proceeding backward 
from f along the direction of ~. The function G (0) will 
be determined by the boundary condition on the 
surface of the fibre. 

If 

with 

F 1 = F 1 + AF I 

Y 

= - X  

Figure 1 Coordinates of  a point near a fibre surface used in the 
derivation of the theory. 

due to fibre-boundary scattering is given by 

1 
Aao - EAr f I Aj~(x, y) dx dy (9) 

region 

is the cross-sectional area of the region of where Ar 
interest. 

Now, let Ajc be the contribution due to the scatter- 
ing at the fibre. This contribution is obtained by inte- 
grating AFm ~ over all velocities whose directions are 
within the solid angle determined by the two tangent 
lines from ~ to the fibre surface, as shown in Fig. 1. For 
adjacent fibres of a real composite, scattering contri- 
butions from fibre surfaces whose distances to the 

(4) point of interest in the integration are greater than A 0 
are neglected. Equation 9 therefore can be written as 

= EA-----~ r dr Ajo dq~ (10) 

(5) 
where a is the fibre radius and r and q~ are polar 
coordinates of the integration point (Fig. 1). Conse- 
quently, Aar is given by the change, due to one fibre, 
in the annular region a ~< r ~< (A0 + a) around the 
fibre, as shown in Fig. 2. Thus, this is the problem 
of scattering from the external surface of  a cylinder 
and is the inverse of the problem solved by Dingle 
[2] wherein scattering occurred inside a cylinder of 

(6) radius a. 
If  a0 is the conductivity of the bulk metal and J0 is 

then the change in Fm ~ is due to scattering at the fibre 
surface. Thus, AF ~ experiences an exponential decrease 
as the point f of interest is moved away from the fibre 
boundary. The distance moved away from the fibre 
surface is called the characteristic length A0, or the 
mean free path due to scattering. 

If the cell region in the matrix is that region A0 away 
from the fibre surface, then AF ~ is mainly determined 
by the scattering at the fibre boundary. The change in 
the current density Ajc in this region is given [3] by the 
formula 

Ajc(X, y) ~- - 2e I I f v"AFI dvx dr ,  dvz (s) 

and the changes in the bulk conductivity of a region 
Figure 2 The shaded region shows the electron scattering region 
around a fibre. 
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Figure 3 C o o r d i n a t e s  a n d  ve loc i ty  c o m p o n e n t s  o f  v. 

m-- X 

the corresponding current density, then 

f l  jo(~) ds 
O" _ _  reg ion  (11) 
ao I f  Jo ds 

r eg ion  

Lettingj~(?) = Jo + Aj~, and sincejo is independent of 
?, Equation 11 can be written as 

1 f f  Aj~(?)ds 1 + (12) 
0"0 Z region Jo  

But 

f f  Ajo(F) ds (13) 

is given by Equation 10 so that using cylindrical 
symmetry, Equation 12 becomes 

2~ ;~+Ao aj~(r) 
- 1 + - r dr (14) 

ao ~ J0 

2.1. Solution of the Boltzmann equation 
It is assumed that the distance separating fibres is 
greater than the electron-scattering mean free path. 
This means that scattering contributions within the 
region a ~< r ~< (A0 + a) are not negligible. When 
the fibre separation distance is of  order A0, contri- 
butions from other fibre surfaces at the point F of  
interest will occur, thus representing overlaps in 
scattering regions. At present, this case has not been 
calculated. 

Now, following Dingle [2], cylindrical coordinates r 
and q5 as shown in Fig. 3, are introduced: 
x = r cos q~,y = r sin ~b, z = z, and for the velocity 
components 

v~ = % cos q~ - re, sin q5 

Vy = v~ sin ~b + vr cos q~ (15) 

�9 /3 z ~- 2) z 

Using these coordinates and the fact that the problem 
has cylindrical symmetry, the Boltzmann Equation 1 

becomes [2] 

DF J v~ c3F I vc~"u r c3F 1 F j eE OF ~ (16) 
v --~-r + - r c3% r ~3vo + m* "E 0 ~V z 

which has the general solution [2] 

Fl eE% ~F ~ [ 
= m* ~ 1 - - f ( r v r  2 + v~) 

( , rv' ) l x exp 2 
"CO Vr q- V 

where f(~,  fl) is an arbitrary function .that must be 
even in the variable ~ = r%, since F ~ has to be an 
even function of % from symmetry of the problem. 
The boundary condition at the fibre surface deter- 
mines the funct ionf(a ,  fl). This function is written as 
jr+ for Vr > 0 (electron motion away from the fibre) 
and f_ for vr < 0 (electron motion toward the fibre). 
If p is the probability for an elastic scattering at the 
fibre surface, then the boundary condition at r = a is 

F(vr, %; r = a) = p F ( - v , ,  vr r = a) + g (18) 

where vr > 0, and g is the distribution function for 
diffusively or inelastically scattered electrons. Since 
F = F ~ + F ~, this function is 

g = (1 - p)F  ~ + F l ( % , % ; r  = a) 

- p F 1 ( - v , ,  % ;  r = a) (19) 

where, using Equation 17, 

F ' ( v r , % ; r  = a) = F~(~) 

[ 2 x 1 - p  - f + ( a % , V r  + v2~) 

( a% ~).)] ( 2 0 )  • exp %(Vr 2 + V 

and likewise 

F I ( - - % ,  %; r = a) = FJm(~) 

x 1 - p - - f _ ( a % , %  + v~) 

\%(v,  2 + v~) (21) 

and finally 

g = (l -- p)F  ~ + F~m(~) 

C 2 • 1 - p  - - f + ( a % , v ~  + v~) 

( ave) 
x exp - %(v 2 + v~) 

+ pf_ (avr v~ + v2) exp ( a% ) ]  
@0(Vr ~ ~ v~)" (22) 

The function g must be independent of direction, and 
since Fm~ (~) depends on direction, it follows that 

( a v e )  
1 - - p  - f + ( a % ,  v, + v~ )exp  r0(v~ + v~) 

( ) + p f  (ave, v 2 + v24,) exp \ % ( v  2 + v2r = 0 
(23) 
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As shown in Fig. 3, scattering from the fibre occurs 
only where v, > 0 and for the condition 

v r 
0 < (v~ + v2~) 1/2 < sin (Pmax (24) 

where sin ~0n~a, = a/r; otherwise, f+ = 0 or F l = Fm j . 
This occurs because there are no electrons scattered 
from any surface other than the fibre in the centre of 
the region of interest. Similarly, for v, < 0, F ~ = Fm ~ 
and, therefore,f_ = 0. These results are confirmed by 
the form of the general solution (Equation 3). 

Now, Equation 23 with f_ = 0 gives 

2 v~) f +  (aT.)~, v r -~- 

so that 

a% ) 
= (1 - p) exp \r0(v~ 2 + v~) 

(25) 

and, therefore, the solution 
Equation 16 becomes 

= Fm~(~) [1 - (1  - -  p )  F 1 
L 

2 f+(rvr + v~) = (1 -- p) 

2 2 2 2 2 1/2 
( [ a ( %  + v~ - - r % ]  "~ (26) 

x exp \ z0(v~ + v~) ] 

to the Boltzmann 

( ,rvr a2 v +v    v  lJ2)] 
x exp 

"~o ( ~  + v~) , 

(27) 

when vr and v~ satisfy the condition of Equation 24, 
and F 1 = Fml(6) otherwise. 

2.2. Calculation of the conductivity 
The conductivity is given by Equation 14. To calculate 
Aft, Equation 8 where the integral is performed in 
spherical coordinates (v, 0, q~) is used, with 

vr = v s i n 0 c o s q )  

% = v cos 0 sin q~ (28) 

V z =- '/3 COS 0 

Then, the solution of Equation 27 becomes 

F1 _ e%E OF ~ [ 
m* Or, 1 -- (1 - -p )  

exp( sm 0 
and 

(29) 

Ajc(r) = - 2 e  i ~176 ,0 2 dv 

x f :  s in0  dO f~;:o~ AF17.)z dq~ (30) 

where, as shown in Fig. 3, ~Oma x = sin-l(a/r). The 
current density due to the background scattering is 

jo "= - h e ( h ) 3  foV2dv f : s in  OdOI2"vzglmd~o 

(31) 

Then, as outlined elsewhere [2, 3], 

Ajc(r) 
J0 

3 y:/2 cos20 sin 0 d O  ;max (1  - -  p )  

x e x p ( - [ r c ~  d q ~ A o  sin 0 (32) 

and substituting into Equation 14 gives for the con- 
ductivity ratio 

6 f~+A0 
cos20 sin 0 d0 a _ 1 _ (1 _p)~cc  rdrf:/2 

fro 

• f : m " X e x p ( - -  [re~ -- (a2 -- r2sin2qg)l/2]) o sin 0 - 

(33) 

For convenience of numerical integration, Equation 
33 can be transformed to dimensionless variables by 
setting x = r/a and k = 2a/A0. Then, Equation 33 
becomes 

a 6a 2 
- -  = 1 - -  (1  - p ) - -  
o'0 Ac 

fl +2/k x f~in~(l/x) dx f:/2 cos20 sin 0 dO • 

exp(  Ixcos  
- -  2 s i n  0 do 

(34) 

Equation 34 is the electrical conductivity of the 
matrix due to electron scattering from the fibre surface 
within a region A0. It can be seen that this integral 
depends on the range x and, thus, affects the limit 
sin-J(1/x) of the integral over q~. An analytical sol- 
ution to Equation 34 has not been found. 

3. Numerical integration 
For numerical integration, Equation 34 can be written 
in the form 

2~a2 ti + 2/k ~---~ro = 1 -- (1 - - p ) - - - ~  x d x  

where 

f(O) = cos20 sin 0 (36) 

[x cos q~ 
k 

h(x,O,q~) = exp 2 s i n 0  

- (1 - x 2 sin2q~)l/2]) (37) 

The following nested Simpson's rule integration was 
used to calculate Equations 35, 36, and 37. Defining 
the integral by I(k), 

A0 I(k) = ~-(xoCo + 4XLC1 + 2x2C2 

+ . . .  + 4x,, 1C,_l + x,,C,,) (38) 
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where A0, A, or A, is the integration step, 

3 I ~  (foDo + 4f~D, + 2f2D2 Ci = 

+ . . .  + 4f, ~D,,_, + J~D,,)I 

and 
A2 

D s = -j- (ho 

(39) 

+ 4h 1 + 2h= + . .~  + 4h,_ I + h~) 

(40) 

Equation 40 is therefore an integral of h(x, O, ~) = 
h(x,, 0 s, q)) = Aj over all values of  q~ at a given value 
of  xi and 0j. Likewise, Equation 39 is an integral of  
f(O) for all 0 and a fixed xi. Thus, more explicitly, any 
term in Equation 38 is 

rnxiC~ = mx~{@[fo( -~(ho  + 4h, + . . .  + h~)) 

+ 4 f ~ ( @ ( h o + 4 h ~  + . . .  + h~)) 

(4l) 

where m is either 4 or 2, and for i = 0 or i = n, 
rn = 1. Thus, D~ ~s a single integral, C~ is a double 
integral, and I(k) is the triple integral given by 
Equation 35. 

The calculations were performed on Hewlett- 
Packard HP-41C hand-held calculator with three 
memory modules and a magnetic card reader adapter 
to record the program instructions. The program logic 
was checked out by using f ( O ) =  cos0  and 
h(x, O, q)) = kx sin 0 cos ~o so that the ingration logic 
of the first two integrals can be checked, and also to 
test the conversion dependence on the number of 
integrating steps. These functions were chosen so that 
the integrat of Equation 35 could be done analyticagy 
as a check on the logic. The logic of the integral over 
x was checked by setting the integrals over 0 and r 
equal to unity at each step. The integration was 
carried out for eleven values of  k between 0.5 and 2.0 
and was found to represent a straight line in a plot of 
In N against In k. l(k) is shown in F ig  4. Each point 
required 35min of computation time on the HP-41C 
and conversion was easily obtained in six steps 
(n = 6). 

Initially, an attempt was made to simplify the 
numerical computation by writing Equatiort 35 as 

2~ra 2 e~ + 2/k 
o-a0 = 1 - (1 - p ) ~ J ,  f ( x ) x d x  (42) 

where f (x )  is a curve fit to the integrals over 0 and ~o. 
An excellent curve fit could be obtained wi th f (x )  = 
Cx-",  where C is a constant. However, when integrated 
for each value of  k, n increased with increasing values 
o f k  from 1.1 to 12.8. One value was close to n = 2, 
causing a singularity in the integral in Equation 42. 
Another function of  form f ( x ) =  C e - ~  was 
attempted. When integrated, this function gave a 
sigmoidal-shaped curve departing considerably from 

10 ~ 

10-' 

10-2 

l ~ I [ I I i L [  ~ i i I i l l i l  i t , I i t t  

10-~6~ 10o 10 ~ 10 z 
k 

Figure 4 Values of  the integral  l(k) as a funct ion  of  k where  

k = 2a /A 0. In tegra t ion  step: n = 6. 

that of Fig  4. Moreover,  as k --* 0, the integral in 
Equation 42 approached a constanl  Therefore, 
although this kind of simplification at first appeared 
to simplify numerical integration, it turned out to be 
unworkable. It has not been possible to check I(k) 
against its "real" value because a way to perform 
the integrals anal3,ticalty has not been found. It is 
expected that the numerical integration error is of  
order A4(x, - xo)fv(6)/180 for each integral, where 
x0 < 5 < xn [14], but this has not been studied. Here, 
fiv (6) is the fourth derivative of  the function evaluated 
at 6 [14]. 

4. D e r i v a t i o n  of  the  c o m p o s i t e  
c o n d u c t i o n  

Equation 34 can be written to show temperature 
dependence for a composite or 

~ ( T )  2~a 2 
oc(TR) -- I -- ( l  - p ) ~  I ( k )  (43) 

where ac(T) and O'c(TR) "~ a0(1 - Vr) are the compo- 
site temperature at any temperature and room tem- 
perature, respectively, and I(k) is the numerical 
value of  the triple integral f~r a given value of k. 
The parameter p is the scattering probability for elec- 
trons from the fibre surfaces, which can also be viewed 
as a fibre-surface characteristic or, to use Ziman's 
expression [15], the surface polish. Microstructural 
examination of  the fibre shows its surface to be fairly 
irregular compared to the lattice dimensions, so tha~ 
electrons are scattered diffusively. Hence, it is con- 
sidered that p - 0 in Equation 43. For  a perfectly 
polished surface, p = 1, implying that at(T)~ 
O'c(TR) ----- 1~ This means that the electrons do not 
scatter and there is no change in the matrix conduc- 
tivity except from thermal scattering. 

As A0 increases (k decreases since k = 2a/A 0, where 
a is the fibre radius), ac(T)/ar --+ O, implying that 
the matrix resistivity increases without any bound 
(theoretically speaking) due to scattering from the 
fibres. This boundary scattering has been discussed 
extensively elsewhere [2-5, 15-17]. The scattering 

2413 



k X / 
x. / 

/ \ 

I I 
! 

\ / 
\ / 

I-- 

/ 
/ 

\ 
\ 

f,~*- 
/ 

/ 

\ 

/ 
! 

Z / 

\\ ii 

~ ' i~  ~- ~ _ . _ . _  Ao +0, 

Figure 5 Composite cell used in deriving a conductivity model for 
MMC. 

mean free path A0 is inversely dependent upon tem- 
perature so that I ( k )  ,,~ T n, where n is a constant. 
Below, a relationship between k and T is derived so 
that the results of Equation 43 can be related to the 
material temperature. 

4.1. Derivation of conduct ion  equat ion 
Fig. 5 shows an idealized composite cell of average 
size D with fibres at each corner, with their axes nor- 
mal to the plane of the paper and the radius a. The 
dashed concentric circles indicate the regions with 
radius (A0 + a), centred on the fibres, of the mean 
free path of electrons scattered from the fibre surfaces. 
In this model, it is assumed that a ~< (A0 + a) ~< D, 
and the overlap of scattering is not considered. (Con- 
sideration of the overlap of  scattering regions requires 
a more complex analysis that takes into account the p 
values of each fibre as well as the scattering contribu- 
tion from all surrounding fibres, possibly with a coordi- 
nation number of  12.) For  the case of no overlap in 
scattering regions, the conductivity within the cell in 
Fig. 5 consists of two additive parts: that contributed 
by the composite at room temperature and that con- 
tributed by the scattering region. Therefore, the com- 
posite conductivity at T is 

a~(T) = ac(TR) + a~o(T) (44) 

In Equation 44, ao(TR) ~-- or0(1 -- V0, where a 0 is the 
bulk conductivity, where fibre conductivity is neglected 
since af < o- 0. As the temperature of the composite is 
reduced, the scattering region grows, decreasing the 
composite conductivity by an amount  equal to the 
scattering contribution times the ratio of  the areas of  
scattering and the cell. Thus 

2rca 2 A~c 
a ,o(T)  = - ( 1  -- p ) - - ~ - I ( k ) - ~ c  c a~ (T . )  (45) 

Substituting Equation 45 into Equation 44 gives 

2zca 2 Aso 
ar _ 1 -- (1 -- p ) - - - ~ I ( k ) - - ~  (46) 

ac(TR) 

The total volume of the cell per unit axial length is 
v T = D 2, and the total volume of fibre per unit axial 
length is vr = ~a 2, so that the fibre volume fraction of 
the cell is 

Vr = rc ~ (47) 

The cross-sectional area Ao of the cell is 
Ac = D 2 -- 7ta 2 or, using Equation 47, 

A c = D2(1 - Vr) (48) 

Now, the area of the scattering region is 
As~ = rc[A02 + 2aA0] which, when using the relation 
between k and A 0, gives 

A~ c = 4ha21 + k k2 (49) 

Substituting Equations 48 and 49 into Equation 45 
gives 

Oc(T  ) = 1 - (1 - p ) r  / V  8(1 
ac(rR) \ l  - - - ~ r ]  k 2 k)  I (k )  

+ 

(50) 

As argued above, for real composites, p - 0. More- 
over, since composite resistivity is of  interest for com- 
parison with experimental data, Equation 50 must be 
inverted. This yields the resistivity as 

ec(TR) - \ l  ---C-~fJ k z I (k)  (51) 

Note that as k --* oo (Ao --* 0), the second term in the 
bracket vanishes and oc(T) /oc (Tg)  --* 1, as it should at 
room temperature. This is in agreement with the 
experimental data of Abukay et al. [1] for A1- 
60 vol % B composite. Their measured value of resis- 
tivity at room temperature is essentially that given by 
the usual model Qc/Q0 = (1 -- Vf) -~ (see Equation 3 
in Abukay et al. [1]) for resistivity in the fibre direc- 
tion. Conversely, as k --* O, Qc(T) /~c(TR)  --* oo (in 
theory). In practice, this is not the case since the 
-iiie/m t'ree path approaches a limit as the temperature 
approaches absolute zero because of the lattice dis- 
locations, impurities, and other effects [15-17]. 

Now it is necessary to relate k with temperature. No 
simple model has been found that relates the mean 
free path in an alloy to temperature. Such calculations 
are extremely complex [15, 18] and have not been 
attempted here. However, a simple useful relation can 
be derived that can also be "calibrated" to com- 
posites. First, note that I (k)  is a linear function in k, 
so that a simple regression analysis for a sufficiently 
large sample of values (25 in this instance) gives 

I(k) = 0.27k -'~ (52) 

with the coefficient of  determination of r 2 = 1.00. 
A linear relationship between k and T can also be 

written, assuming such a relationship exists, or 

r = C k  (53) 

where C is a constant. To determine the value of this 
constant, the following argument is used. At room 
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TABLE I Values of lowest temperature T~ for the present TABLE III  Resistivity ratio for 1~- = 0.35 as function of 
model absolute temperature 

V r T~ (K) 

0.10 1.30 
0.20 2.02 
0.30 2.68 
0.40 3.33 
0.50 3.98 
0.60 4.66 
0.70 5.36 
0.80 6.11 
0.90 6.91 

t empe ra tu r e  A0 is close to zero,  mak ing  k large.  Us ing  
Equa t ions  51 and  52 shows tha t  Qc(T)/~c(TR) = 1 
within 2 par t s  in 105 when k = 100. Cons ide r ing  

T R = 3 0 0 K ,  E q u a t i o n  53 gives C = 3. 
In  this model ,  the effect o f  ove r l app ing  e lec t ron 

scat ter ing regions  is neglected and  it is a ssumed  tha t  
A 0 + a = D in the limit.  This  sets a lower  b o u n d  on 
k. Subs t i tu t ing  k = 2a/Ao and  using E q u a t i o n  47, the 
lower b o u n d  on k becomes  

2(Vr/~z) '/2 
k, - 1 - (Vr/~) 1/2 (54) 

Us ing  Equa t ions  53 and  54 to find the lowest  tem- 
pe ra tu re  for  this mode l  yields 

6(Vf/rc) 1/2 
T,  - 1 - ( V ~ / ~ )  '/2 ( S 5 )  

Values  o f  T t aga ins t  Vr are given in Table  I. The  
mean ing  E q u a t i o n  55 is tha t  t empera tu re s  less than  Tr 
have no phys ica l  mean ing  in this mode l  because  then 
~c(T)/Qc(TR) < 0. The  impl ica t ion  o f  the above  
analysis  is tha t  i f  I(k) is l inear ly  re la ted  to k and  a 
l inear  re la t ionsh ip  between k and  T is assumed,  then 

I(k) = 0 .88T - '~  (56) 

which results f rom combin ing  Equa t ions  52 and  53. 
Subs t i tu t ing  E q u a t i o n  56 into  E q u a t i o n  51 gives 

L + 1 
oo(T) ~1 E 2 
o.27Y7 ) 

(57) 

TABLE I1 Resistivity ratio for V r = 0.25 as function of absol- 
ute temperature 

T(K) c~(T)/~r 

2.2665 1633.8 
2.2670 835.9 
2.2675 561.9 
2.2680 423.2 
2.269 283.2 
2.270 213.2 
2.280 61.7 
2.29 36.3 
2.30 25.8 
2.50 4.38 
3.O0 1.92 
5.00 1.15 

10.00 1.026 
20.00 1.0054 
30.00 1.0022 
50.00 1.0007 

100.00 1.0002 

T (K) Qo(T)/Qo(TR) 

3.2755 2948.5 
3.2760 1371.0 
3.2765 893.3 
3.2770 622.6 
3.2775., 526.6 
3.2780 437.0 
3.2785 373.5 
3.2900 86.4 
3.30 52.1 
3.40 10.96 
3.60 4.67 
3.80 3.18 
4.00 2.516 
6,00 1.286 
8.00 1.126 

10.00 1.071 
20.00 1.0141 
30.00 1.0058 
50.00 1.0019 

100.00 1.0004 

Resul ts  o f  ca lcula t ions  with Equa t ion  57 beginning  
with the lowest  t empera tu res  up  to 100 K are  shown in 
Table  II  for  Vf = 0.25, Table  I I I  for  Vf = 0.35, and  
Table  IV for Vf = 0.50. These values  o f  Vf are  repre-  
sentat ive o f  fibre vo lume f rac t ion  o f  M M C .  F o r  values 
o f  T less than  the first ind ica ted  t empe ra tu r e  in these 

tables,  ~c(T)/Qc(TR) < 0, which is phys ica l ly  mean-  
ingless. F o r  values o f  T greater  than  the lowest  value,  
o~o(T)/~c(TR) decreases  very sharply.  This  t rend  is in 
agreement  with the results  o f  theories  deve loped  by 
Dingle  [2] and  discussed elsewhere [15-17] .  

5. D i s c u s s i o n  
The values l isted in Tables  II  to IV show tha t  (i) a very 
steep rise in compos i t e  resist ivity occurs  at  tem- 
pera tu res  be low a b o u t  10 K,  and  (ii) a t  T > 10 K,  the 
compos i t e  resist ivity is essent ial ly  the value at  r o o m  
tempera tu re ,  in agreement  with exper imenta l  da t a  [1]. 
The  steep rise in resist ivi ty at  very low t empera tu re  is 
due ent i re ly  to the effects o f  e lect rons  sca t tered  f rom 
the fibre surfaces. This resist ivity can be orders  o f  
magn i tude  above  the bu lk  values.  On average,  for  

TABLE IV Resistivity ratio for Vf = 0.50 as function of 
absolute temperature 

r (K) Oc(T)/ec(T~) 

5.3776 3038.6 
5.3780 1959.4 
5.3785 1357.1 
5.3790 1038.1 
5.3800 706.2 
5.3850 272.1 
5.390 168.7 
5.395 122.4 
5.400 96.09 
5.50 18.64 
6.00 4.282 
8.00 1.629 

10.00 1.2980 
20.00 1.0505 
30.00 1.0202 
50.00 1.0066 

100.00 1.0015 
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calculations presented in this paper, this rise amounts 
to a factor of about 2200 for a decrease of  6 K  in 
temperature below 10 K. Equation 57 shows that 

oAT)  (1 - -  C T  4)-1 ( 5 8 )  
0c(TR) 

for very low temperature, and that in the limit of 
room temperature, Oc(T)/qc(TR) --* 1, or qc(TR)/Oo ~-- 
(1 -- V~) ~, as it should be. This conclusion is in 
agreement with the findings of Abukay et aL [1]. 

The electrical conductivity of MMC depends also 
on the post-fabrication heat treatment, as discussed by 
Jenkins and Arajs [19]. They showed that matrix 
annealing temperatures ranging from 298 to 873 K 
will result in a general reduction in the composite 
resistivity of about a factor of two. These data are for 
A1-28vol% graphite where the graphite fibre is 
Thornel 50. 

Jenkins and Arajs [19] also showed that the decrease 
in resistivity with increasing annealing temperature 
for Al -28vo l  % graphite is linear. However, this 
appears to be incorrect. Despite the large error bars 
in their data, the distribution in the datum points 
would indicate that this decrease follows the recovery 
and recrystallization profiles for heat-treated alloys 
[20]. 

Aside from resistivity decreases due t o  annealing, 
Jenkins and Arajs [19] also observed a linear decrease 
in resistivity with temperature of about a factor of 2.5 
for the same composite within a temperature range 
decreasing from 290 to 80 K. This linear decrease is 
due to thermal effects in the alloy and has nothing to 
do with the electron scattering effects discussed in this 
paper. This linear decrease was also observed for 
A1-60 vol % B in the axial and transverse directions 
[1]. The linear decrease can be well represented by a 
functional relationship of the form 

/295~ c 
 o(r) = (59) 

where 00(Tg) is the bulk resistivity at room tem- 
perature, Tg, taken as 3.3 x 10-6~cm [1], and the 
constant C = - 1.45 for the same data [1]. Equation 
59 is not valid when T/O <~ 0.2, where | is the Debye 
temperature [18]. 

The adaptation of  the theory discussed in this paper 
presents some difficulties, as discussed in the following. 

Equation 43 depends on the cell cross-sectional area 
Ac, which is somewhat arbitrarily defined. The analy- 
sis is based on a square array to define A~ and Asc, but 
the resulting Equation 57 does not depend on any 
specific geometry. The theory does not account for the~ 
overlapping electron scattering regions, the effects of  
which have not yet been calculated. In real com- 
posites, the arrays of fibres are arranged in a some- 
what random fashion [21]. This gives rise to overlap- 
ping regions as shown in Fig. 6. As the size of reinforc- 
ing fibre increases, order appears out of randomness 
and the fibre distribution appears as quasi-square or 
hexagonal arrays [22]. This is due mostly to fabri- 
cation methods. For  small-diameter close!y-spaced 
fibres, many fibres are in physical contact. Conse- 
quently, the degree of  overlap in the scattering regions 
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Figure 6 Appearance of real arrays of small fibres in a metal-matrix 
composite, showing equal scattering regions (fixed temperature) 
overlapping due to fibre distance smaller than A 0. 

varies a great deal. These are shown as cross-hatching 
in Fig. 6. Within such regions (for example, Region A 
in Fig. 6), contributions to electron scattering come 
from Fibres B and C. Therefore, the integral in 
Equation 34 must be modified. 

It is known from the theory of metals that electron 
transport is very sensitive to lattice defects and 
impurities. In a pure crystal, electron motion is 
unimpeded except by thermal effects at high tem- 
peratures. Thus, one would expect the mean free path 
in a pure crystal at low temperature to be very large, 
on the order of 103 to 105#m [17]. The value of the 
resistivity in pure metals is generally proportional to 
the absolute temperature for T ~ | where | is the 
Debye temperature. When T ~ | the resistivity is 
0 ~ Ts /M|  where M is the mass of the lattice atoms 
and for aluminium, | = 390 K. Off the other hand, 
the resistivity of a metal containing foreign atoms in 
solid solution is nearly always greater than that of  the 
pure metal, and the increase is considerable in many 
cases. In general, this increase is independent of tem- 
perature (Matthiessen's rule) [18]. 

The greatest weakness of  the theory presented is the 
connection made between the integral I(k) and T 
through an assumed linearity between k and T. Thus, 
some arbitrariness exists in selecting the lowest tem- 
perature, in other words in "calibrating" the theory by 
means of  a parameter in the absence of  data. A physi- 
cal approach is to relate A0 to T from a detailed theory 
supported by experimental data. As far as is known, 
this has not been done for MMC at liquid-hydrogen 
or liquid-helium temperatures [6]. The mean free path 
A0 is a function of  lattic defects and impurities and 
alloy structure. Typical grain dimensions in aluminum 
alloys are on the order of  1 to 10 #m. Consequently, at 
cryogenic temperatures, one would expect the upper 
limit of  the electron mean free path not to exceed 1 to 
10#m. Thus, for A0 ~- 5#m, k -  30/5 = 6when the 
fibre diameter is approximately 30#m [21]. From 
Equation 53, then, T -  18K. According to the 
theory developed in this paper, at this temperature, 
oc(T)/oo(TR) ~- 1.12 to 1,065 for Vf = 0.25 to 0.50, 
respectively. However, these estimates are based upon 
the constant C = 3 in Equation 53, which is derived 



from heuristic arguments. Therefore, T~ is not ade- 
quately defined. For obvious reasons, T = 0 cannot 
be used because then ~c(T)/~o(TR) < 0 in this model. 
The conclusion, then, is that, in the absence of ade- 
quate theory for A0 as a function of T and the 
apparent lack of experimental data [6], the present 
theory can only predict the trend expected in the 
composite resistivity at cryogenic temperatures. 
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